Mark scheme – Carboxylic Acids and Esters

Questi on		ti	Answer/Indicative content	Marks	Guidance
1		i	Reagents $K_2Cr_2O_7$ AND acid AND reflux \checkmark Equation HO(CH_2)_4OH + 4[O] \rightarrow HOOC(CH_2)_2COOH + 2H_2O [O] AND H_2O \checkmark [O] AND H_2O \checkmark Correctly balanced equation \checkmark	3 (AO1.1) (AO2.5) (AO2.6)	ALLOW Na ₂ Cr ₂ O ₇ OR Cr ₂ O ₇ ^{2–} ALLOW H ₂ SO ₄ OR HCI OR H ⁺ ALLOW words. e.g. 'acidified dichromate' ALLOW a small slip in formula for dichromate e.g KCr ₂ O ₇ , <u>Examiner's Comments</u> Many candidates did not correctly balance this equation or missed water as a product entirely.
		ii	$\int_{HO} (CH_{2})_{2} - (CH_{2})_{2}$	2 (AO2.1 ×2)	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW δ + on H atoms of CH ₂ group ALLOW H-bond for hydrogen bond ALLOW H bond between C=O and H ₂ O, i.e. O—H hydrogen/H bond $H^{\delta +}$ O—C-(CH ₂) ₂ -C HO H IF diagram is not labelled, ALLOW hydrogen bond/H bond from text Examiner's Comments Candidates who answered this question well had clear, labelled diagrams. Too often, labels, dipoles and lone pairs were missing.
			Total	5	

	Equation		ALLOW 2HOCH(R)COOH + Mg
	2HOCH(R)COOH + Mg \rightarrow (HOCH(R)COO) ₂ Mg + H ₂		\rightarrow 2HOCH(R)COO ² + Mg ²⁺ + H ₂
			ALLOW multiples
	Organic product √		IGNORE poor connectivity to OH groups <i>Given in question</i>
	Balance √		
	<i>Type of reaction</i> Redox √		Examiner's Comment: Candidates found this part difficult and the problem presented many opportunities for errors. Many candidates tried to show charges for the salt formed but often the 2+ charge was missing on Mg ²⁺ or Mg ⁺ was shown. The balanced equation required a balancing 2 before compound A but this
			was often omitted. Candidates using skeletal formulae fared better than attempts to show structural formulae such as HOCHRCOOH, with many omitting the H atom from CHR. Few candidates identified the reaction as redox, with many giving neutralisation instead.
	Equation		ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non- ambiguous
	2HOCH(R)COOH		ALLOW 1 mark of the 2 equation marks for formation of '3 ring' with balanced equation: $H_{0} \xrightarrow{0}_{R} \xrightarrow{0}_{OH} \xrightarrow{H_{0}S0_{4}} \xrightarrow{0}_{R} \xrightarrow{0}_{C} \xrightarrow{-C} \xrightarrow{-C} \xrightarrow{0}_{O} \xrightarrow{+H_{0}} \xrightarrow{0}_{OH} \xrightarrow{0}_{OH$
ii	Organic product √	3	ALLOW condensation polymerisation ALLOW addition–elimination
	Balance √		IGNORE elimination IGNORE dehydration Examiner's Comment:
	<i>Type of reaction</i> Condensation OR esterification √		As with 4(b)(ii), candidates found this question difficult. It was not often that the dimer was seen but, when it was, the structure was usually correct. Balancing required 2H ₂ O and the balancing 2 was often omitted.
			In contrast with 4(b)(i), many more

				candidates identified the type of reaction, here condensation or esterification.
		Total	6	
6	÷	K _a = [H ⁺] [C₄H ₉ S ⁻] ✓ Square brackets required	1	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non- ambiguous Examiner's Comment: This part was very well answered. Candidates responded with either near molecular formulae, such as C ₄ H ₉ SH, structural formulae or with skeletal formulae. Some candidates made careless errors such as omitting the negative charge or showing [H ⁺] ² as numerator rather than [C ₄ H ₉ S ⁻] [H ⁺].
	ï	$CH_{3}CH_{2}CH_{2}CH_{2}SH + H_{3}C - c + H_{2}O$ $\longrightarrow H_{3}C - c + H_{2}O$ $Structure of thioester \checkmark$ Complete equation \checkmark	2	ALLOW correct skeletal OR displayed formula OR mixture of the above as long as non-ambiguous ALLOW C4H9SH ALLOW CH3COOH Thioester functional group must be fully displayed, OR as a skeletal formula but allow SC4H9 in thioester Examiner's Comment: In this part, candidates were expected to apply their knowledge and understanding of esterification to thiols and thioesters. Over half the candidates obtained a correct structure of the thioester. Most of these candidates constructed a balanced equation although some omitted the water product. Common errors included formation of a conventional ester and H2S, and retaining the O atom from the OH in the carboxyl group to form –COOS–. As with 4(b)(i), structural and skeletal formulae were used. Candidates are less likely to omit H atoms if the skeletal formula is used.
	ii i	SH J	1	IF correct skeletal formula is shown, IGNORE displayed formula in a second structure Examiner's Comment:

				Just over half the candidates drew the correct structure, displaying a good understanding of interpreting organic nomenclature when drawing a structure. Common errors included omission of the CH ₂ adjacent to the terminal –SH group and placing the branch or double bond in wrong positions. Some candidates spoilt an otherwise good response by showing a structural formula or a mixture of skeletal and structural formulae.
	i v	$\begin{array}{c} & & \downarrow \\ & \downarrow \\ & & \downarrow \\ \\$	2	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non- ambiguous Examiner's Comment: In this part, candidates were expected to apply their knowledge and understanding of condensation to an entirely new context. One mark was allocated for the reactants and this was usually scored. The second mark for the novel cyclic compound and water was much more difficult, aimed at stretch and challenge. A significant number of candidates interpreted the information to obtain a correct cyclic structure but this mark was the domain of the most able candidates.
		Total	6	
7	i	Burette readings Final (reading) 23.15 45.95 32.45 /cm ³ Initial (reading) 0.60 23.15 10.00 √ /cm ³ Correct titration results recorded with initial and final readings, clearly labeled AND all readings recorded to two decimal places with last figure either 0 or 5 AND all readings Titres	4	Table not required ALLOW initial reading before final reading
		 Titre / cm³ 22.55 22.80 22.45 √ Correct subtractions to obtain final titres to 2 DP Units 		ALLOW ECF

	 Units of cm³ for initial, final and titres √ Mean titre mean titre = 22.55 + 22.45/2 = 22.50 OR 22.5 cm³ √ i.e. using concordant (consistent) titres 		ALLOW units with each value ALLOW brackets for units, i.e. (cm ³) ALLOW ECF from incorrect concordant titres
			Examiner's Comment: This question should have been four straightforward marks, but it was actually found very challenging by candidates. Most read the scales correctly but then did not present their findings clearly, often scattering unlabelled numbers around, omitting units with absence of any heading linking them to the burettes. 0.60 was very often shown as 0.6 and 22.80 as 22.8. Candidates were expected to take the mean of their closest titres but a significant number took an average of all three titres instead. The mark scheme allowed for a mean titre obtained from incorrect titres. Candidates need to appreciate the importance of communicating their results in a clear and comprehensive way with headings and units, and showing numerical values to the accuracy of the apparatus used.
ii	ALLOW 3SF or more throughout IGNORE trailing zeroes, e.g. ALLOW 0.084 for 0.0840 $n(\text{NaOH}) = 0.0840 \times \frac{22.50}{1000} = 1.89 \times 10^{-3} \text{ (mol) } \checkmark$ $n(\text{A}) \text{ in } 250 \text{ cm}^3 = 10 \times 1.89 \times 10^{-3} = 1.89$ $\times 10^{-2} \text{ (mol) } \checkmark$ $M(\text{A}) = \frac{2.495}{1.89 \times 10^{-2}} = 132 \text{ (g mol}^{-1}) \checkmark$ $M(\text{alkyl group}) (= 132 - 75) = 57 \checkmark$	6	ALLOW ECF from incorrect mean titre in 4a(i) e.g. From 22.60 cm ³ (mean of all 3 titres in (i), $n(NaOH) = 1.8984 \times 10^{-3}$ (mol) ALLOW ECF from incorrect $n(NaOH)$ ALLOW ECF from incorrect $n(A)$ ALLOW ECF from incorrect $M(A) - 75$

$R = C_4H_9 \checkmark$ ALLOW alkyl group in drawn structure with straight chain or branch (es) in wrong position, e.g. for R = C_4H_9, CH_3CH_2CH_2CH_2 OR (CH_3)_3C	ALLOW ECF for alkyl group closest to calculated <i>M</i> (alkyl group), e.g. for <i>M</i> = 45, ALLOW C ₃ H ₇ (43)
Structure with chiral carbon atoms identified (see * below)	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous IGNORE poor connectivity to OH groups <i>Given in question</i>
	Common error for 4 marks max 25.00 instead of 22.50 and scaling by × 10 2.10 × 10^{-3} . \rightarrow 2.10 × 10^{-2} \checkmark \rightarrow 118.81 \checkmark \rightarrow 43.81 \checkmark \rightarrow C ₃ H ₇ \checkmark 25.00 instead of 22.50 and scaling by $\times \frac{250}{22.50}$
	2.10 × 10 ⁻³ · → 2.33 × 10 ⁻² \checkmark → 106.93 \checkmark → 31.93 \checkmark → C ₂ H ₅ \checkmark No structure with 2 chiral centres possible . Examiner's Comment:
	Most candidates made some headway with this problem. Candidates were expected to process their mean titre from $4(a)(i)$ in a conventional titration calculation to arrive at a molar mass of 132 g mol ⁻¹ . From there, candidates could determine a C ₄ H ₉ alkyl group and draw the structure of compound A with two chiral carbon atoms.
	Most candidates scored some marks but processing beyond the molar mass proved to be difficult for weaker candidates. Some candidates showed a structure with a linear C_4H_9 group which contains one chiral carbon atom.
	A common error was use of 25.0 cm ³ , instead of the titre, as the volume of NaOH, obtaining an initial value of 2.10×10^{-3} mol. The mark scheme allowed processing of this value to be credited using error carried forwards. Some candidates omitted to scale their initial value by a factor of ×10, obtaining a molar mass of over 1000 g mol ⁻ ¹ , e.g. 1320 instead of 132. A large range of

					marks was seen and the question discriminated extremely well.
			Total	10	
8		i	C2H3O3 √	1	
		ï	2,3− dihydroxybutanedioic acid √	1	ALLOW 2,3-dihydroxybutane-1,4-dioic acid ALLOW absence of hyphens or extra hyphen or space, e.g. 2,3-dihydroxy butanedioic acid ALLOW full stops or spaces between numbers e.g. 2,3 dihydroxybutanedioic acid
		ï	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous 'End bonds' MUST be shown IGNORE brackets IGNORE n
		i V	$[H_3N^+(CH_2)_6NH_3^+] [-OOC(CHOH)_2COO^-]$ $OR [H_3N(CH_2)_6NH_3]^{2+} [OOC(CHOH)_2COO]^{2-}$ Positive ion correct \checkmark Negative ion correct \checkmark	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW charge either on N atom or NH ₃ ⁺ Negative charge must be on COO ⁻ ALLOW[H ₂ N(CH ₂) ₆ NH ₃ ⁺] [-OOC(CHOH) ₂ COOH]
			Total	6	
9	а	i	Reagent and observation sodium carbonate AND Fizzing/effervescence/bubbling √ Equation Correctly balanced equation √	2	Note: both reagent and observation are required for first mark ALLOW name or formula for any suitable carbonate e.g NaHCO ₃ , potassium carbonate etc. ALLOW reagent from equation if not stated
			e.g. 2RCOOH + Na ₂ CO ₃ \rightarrow 2RCOONa + CO ₂ + H ₂ O		elsewhere
		ii	Reagent and observation Tollens' (reagent) AND Silver (mirror) √	2	Note: both reagent and observation are required for first mark ALLOW ammoniacal silver nitrate OR

		Equation RCHO + [O] → RCOOH √		Ag ⁺ /NH ₃ ALLOW H ⁺ /Cr ₂ O ₇ ²⁻ OR acidified (potassium/sodium) dichromate AND Orange to green (<i>this would identify the</i> <i>aldehyde from the carboxylic acid, ketone</i> <i>and esters</i>) ALLOW errors in spelling
1	þ	2,4−dinitrophenylhydrazine AND Orange/yellow/red precipitate √	1	ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate
	c i	$\begin{array}{l} CH_{3}COOC(CH_{3})_{3}+NaOH\rightarrow CH_{3}COONa+(CH_{3})_{3}COH\\ CH_{3}COONa\checkmark\\ Rest of equation correct\checkmark\\ \hline \mbox{OR}\\ (CH_{3})_{3}CCOOCH_{3}+NaOH\rightarrow (CH_{3})_{3}CCOONa+CH_{3}OH\\ (CH_{3})_{3}CCOONa\checkmark\\ Rest of equation correct\checkmark\\ \hline \end{array}$	2	Note: the hydrolysis of either ester may be given ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW molecular formulae of products (question requires structures of products to be shown)
	i	Reagent and observation $H^+/Cr_2O_7^{2-}$ OR acidified (potassium/sodium) dichromateANDOrange to green (with CH_3OH) \checkmark Equation $CH_3OH + [O] \rightarrow HCHO + H_2O$ OR $CH_3OH + 2[O] \rightarrow HCOOH + H_2O \checkmark$	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW molecular formulae (question requires structures of organic compounds to be shown)
	i	¹³ C NMR (1 mark) (It is) not possible to identify (the esters) with ¹³ C NMR AND (both) spectra would contain four peaks (with similar chemical shifts) √ ¹ H NMR (2 marks) (It is) possible to identify (the esters) with ¹ H NMR	3	ALLOW 'same number of peaks' in place of 'four peaks'

		(¹ H NMR spectrum of) CH₃COOC(CH₃)₃ has a singlet/peak between 2.0−3.0 (ppm)		ALLOW any value or range of values within
		(¹ H NMR spectrum of) (CH ₃) ₃ CCOOCH ₃ has a singlet/peak between $3.0-4.3$ (ppm)		2.0-3.0
		All three correct statements $\sqrt{}$		ALLOW any value or range of values within 3.0-4.3
	+	Any two correct statements V		
	d	$\frac{1}{CH_{3}-C-CH_{2}CH_{2}CH_{3}}$ $\frac{1}{CH_{3}-C-CH_{2}CH_{2}CH_{3}}$ $\frac{1}{CH_{3}-C-CH_{2}CH_{3}}$ $\frac{1}{CH_{3}-C-CH_{2}CH_{3}}$ $\frac{1}{CH_{3}-C-CH_{2}CH_{3}}$ All three correct \checkmark / Any two correct \checkmark Aldehyde (3 marks) Peak at (δ) 1.2 shows HC-R AND No H on adjacent C atom as peak is singlet \checkmark Peak at (δ) 9.6 shows H-C=O AND No H on adjacent C atom as peak is singlet \checkmark $\frac{1}{H_{3}C-C+C+C-H_{3}}$ OR	5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE names of ketones
			4-	
		lotal	17	
1 0	a i	i Dipole shown on C=O bond, $C^{\delta+}$ and $O^{\delta-}$, AND curly arrow	3	ANNOTATE ANSWER WITH TICKS AND CROSSES

	from the C=O bond to the O ⁵⁻ atom AND Curly arrow from π -bond to C in CO ₂ \checkmark $\int_{0}^{0} \int_{0}^{\delta^{+}} \int_{0}^{\delta^{+}}$		DO NOT ALLOW the following intermediate:
			π -ring must cover more than 1/2 of the ring AND 'horseshoe' in the correct orientation, <i>ie</i> gap towards C with COO ⁻ ALLOW + sign anywhere inside the 'hexagon' of intermediate
ii	Neutralisation \checkmark (In Stage 1) phenol loses H ⁺ AND (In Stage 3) carboxylate ion gains H ⁺ \checkmark	2	ALLOW acid-base ALLOW both Stage 1 AND Stage 3 involve proton transfer
ii	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 7.31 (g) award 3 marks actual $n(salicylic acid) \text{ produced} = \frac{4.83}{138} = 0.035(0) \text{ (mol) } \checkmark$ theoretical	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW ECF at each stage ALLOW 3 SF up to calculator value correctly rounded for intermediate values 100 ALLOW expected mass compound E = $\frac{100}{4.83 \times 45.0} = 10.733 \text{ (g)}$

		 Condenser (correctly orientated) Stopper/thermometer Delivery tube and suitable collection vessel 		DO NOT ALLOW diagram mark if top of distillation head not closed
		(Round-bottom /pear-shaped) flask Heat		Note: suitable collection vessels include: conical flask, boiling tube, test-tube, beaker etc.
		(Round-bottom/pear-shaped) flask AND condenser AND heat (source) √		
		Total	13	
1		H CH ₃ O CH ₃ CH ₃ C	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Examiner's Comments A good discriminator. Many failed to produce the correct cyclic structure.
		Total	1	
1 2		C17H35COOH + NaOH → C17H35COO ⁻ Na ⁺ + H2O √	1	ALLOW C ₁₇ H ₃₅ COONa IGNORE state symbols Examiner's Comments Very well answered. Most candidates could write the correct equation.
		Total	1	
1	i	2C2H5COOH + Na2CO3 → 2C2H5COONa + CO2 + H2O ✓	1	IGNORE state symbols and use of equilibrium sign FOR CO ₂ + H ₂ O ALLOW H ₂ CO ₃ ALLOW C ₂ H ₅ COO ⁻ Na ⁺ OR C ₂ H ₅ COO ⁻ + Na ⁺ BUT BOTH + and – charges must be shown ALLOW NaC ₂ H ₅ COO

				Examiner's Comments
				Equations for reactions of weak acids continue to improve. Ionic signs within the formula of sodium propanoate were allowed but both were then needed. Common errors included an incorrect formula of sodium propanoate, usually (CH ₃ CH ₂ COO) ₂ Na, sodium carbonate as NaCO ₃ or an equation with correct species but unbalanced. Candidates are recommended to carefully check the formulae for missing atoms.
				ALLOW $C_2H_5COOH + OH^- \rightarrow C_2H_5COO^-$ + H_2O IGNORE state symbols Examiner's Comments
	ii	$H^+ + OH^- \rightarrow H_2 O \checkmark$	1	The required equation using $H^+(aq)$ and $OH^-(aq)$ was commonly seen but a significant number of candidates wrote an equation using $H^+(aq)$ and $CO_3^{2^-}(aq)$, perhaps writing an ionic equation for the reaction in (i) rather than a different reaction.
		Total	2	
1 4	i	HO - C - C - C' $HO - C - C - C'$ $HO - C - C - C'$ $H = H = 0$ $HO = C - C - C'$	3	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW —O ⁻ Na ⁺ OR —O ⁻ (cation not required) DO NOT ALLOW —O—Na (covalent bond) DO NOT ALLOW —O (without the sodium) ALLOW delocalised carboxylate
		$H = H^2 + C + C + C + C + C + C + C + C + C + $		Examiner's Comments The majority scored two marks here. The question had a three mark total for drawing
		—NH ₃ ⁺ in second product $✓$		two structures and this may have prompted some candidates to incorrectly form a salt with the alcohol group in reaction 1 . Many were able to draw a correct structure for the ester formed in reaction 2 , but very few protonated the amine group in acidic conditions. The protonation of hydrolysis

г

				products has been well represented in recent papers.
	ii	perfume / fragrance / flavouring ✔	1	IGNORE solvent OR food additive Examiner's Comments Well answered with most of the correct responses referring to perfumes and flavourings which are the uses listed in the specification. Common responses marked as incorrect were suggestions that this ester could be used for making dyes, polymers or textiles.
	ii i	Reaction 3: (hot) ethanolic ammonia ✓ Reaction 4: oxidation ✓ Reaction 5: hydrolysis ✓	3	ALLOW NH ₃ (dissolved) in ethanol IGNORE other conditions ALLOW oxidisation / oxidised DO NOT ALLOW redox ALLOW nucleophilic addition-elimination DO NOT ALLOW nucleophilic substitution IGNORE acid / base Examiner's Comments Most candidates were able to score at least one mark here, usually for correctly identifying reaction 4 as an oxidation reaction. Although the use of excess reagent was not required for reaction 3, some missed ethanol as an essential solvent and reaction 5 was occasionally described as a reduction.
		Total	7	
1 5	i	reagent = K₂Cr₂O7 AND H₂SO4 ✓	3	ALLOW acidified dichromate ALLOW H ⁺ / any acid IGNORE concentration of acid ALLOW Na ₂ Cr ₂ O ₇ / Cr ₂ O ₇ ²⁻ / (potassium OR sodium) dichromate((VI)) ALLOW acidified MnO ₄ ⁻ ALLOW Tollens' reagent / ammoniacal silver nitrate IGNORE conditions ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW ECF from incorrect compound C Check positions of OH groups

				arrow from the negative charge or lone pair on the oxygen atom of the intermediate to H in H ₂ O AND from the O—H bond to the O in H ₂ O. Dipole not required on water molecule Penalise missing –OH on intermediate only IGNORE product – already given credit in part (i) Examiner's Comments The full range of marks was seen. Common errors included missing charges, curly arrows beginning or ending in the wrong place and —OH groups missing or placed in the wrong position on the intermediate structure. Most candidates chose to show the reaction of the intermediate with water rather than with H ⁺ ions
		Total	6	
1	a i	$ \begin{array}{c} $	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW —O—Na OR -COO-Na (covalent bond) ALLOW —O ⁻ ALLOW —ONA ALLOW —COONA OR
				Examiner's Comments The question asked for the product of the reaction with excess sodium hydroxide. Many answers included the product formed by the reaction of just one of the functional groups. Most commonly the phenol group was left unreacted. The mark scheme permitted the omission of the cation from the formula of the compound but this omission was rarely seen.

			IGNORE goes clear
			DO NOT ALLOW other colours for bromine
			IGNORE cream precipitate
	(Bromine) would be decolourised / turn (from orange / red /		DO NOT ALLOW salicylic acid turns colourless / decolourised
ii	OR white precipitate / solid / emulsion (formed) ./	1	IGNORE temperature / fumes
			Examiner's Comments
			The observation for the reaction of a phenol with bromine was very well known and many candidates offered two correct observations when only one was required to score the mark.
			ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
			MUST be all correct to score mark
ii	OH + $Br_2 \rightarrow$ OH COOH Br COOH	1	ALLOW molecular formulae, i.e. $C_7H_6O_3 + Br_2 \rightarrow C_7H_5O_3Br^+ HBr$
i	+ HBr	I	Examiner's Comments
			A very well answered question. Most candidates copied the structural formulae given in the question. Some made errors when they unnecessarily converted the structures into molecular formulae. HBr was occasionally missing as a product.
			ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
			ALLOW 2-propanol
;	(CH ₃) ₂ CHOH / CH ₃ CH(OH)CH ₃ / propan(–)2(–)ol		DO NOT ACCEPT incorrect name or incorrect formula of alcohol
v	AND acid $/ H^+ / H_2 SO_4$ (catalyst)	1	IGNORE reflux / concentrated (acid)
	AND $au(u / \Pi / \Pi_2) \cup 4 (catalyst) V$		Examiner's Comments
			Many candidates correctly gave the formula for propan-2-ol and included an acid catalyst. Common non-scoring answers omitted the acid or the alcohol or gave an incorrect name for the alcohol.

				marks for incorrectly positioned curly arrows.
				ALLOW diagram to show movement of lone pair into ring but delocalised ring must be mentioned
		(In salicylic acid)		ALLOW lone pair / pair of electrons on O(H) / phenol is (partially) drawn / attracted / pulled into delocalised ring
				IGNORE 'activates the ring'
		lone pair / pair of electrons on O(H) / phenol is \sim (partially) delocalised into the ring \checkmark		ALLOW more electron rich
		electron density increases / is high ORA √		DO NOT ALLOW charge density or electronegativity
	ï		3	ALLOW (salicylic acid) attracts electrophiles more/more susceptible to electrophilic attack
		Br ₂ / electrophile is (more) polarised ORA \checkmark		ALLOW Br ₂ is (more) attracted OR Br ₂ is not polarised by benzene OR induces dipoles (in bromine / electrophile)
				Delocalise(d) needed to score the first marking point
		✓QWC: delocalised / delocalized / delocalise etc. must be spelled correctly in the correct context at least once		This question was very well answered with the majority of candidates scoring at least two marks. The most common errors were the omitting the words delocalised or lone pair or failure to use the word delocalised in the correct context.
		Total	11	
1 7		Molar mass of B = 74 √ B-F clearly identified	6	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Check and annotate page 19 below this response Molar mass = $\frac{2.59}{0.035}$ = 74 For structure of B, C, D or E / F ALLOW correct displayed OR correct structural formula OR correct skeletal formula OR mixture of the above as long as unambiguous.
				DO NOT ALLOW missing H atom(s) in a

structure of butan-2-ol, although a significant proportion of candidates

suggested **B** was butan-1-ol.

The more able candidates identified the structure of C as butanone, but a large proportion of the cohort did not suggest a structure. Some candidates who used displayed formula for C often included an extra hydrogen atom on the carbonyl group.

Most candidates were able to suggest a correct structure of carboxylic acid **D** and therefore deduced that the reaction between **B** and **D** was an esterification

					reaction. The most difficult part of this question was identifying E and F . The most able candidates provided a correct structure for the ester, however some candidates often missed of one of the hydrogen atoms from their displayed formula. The most common incorrect response was to the structure of butyl propanoaoate. Some candidates identified the other compound formed in the reaction of B and D as water but a large proportion gave a second ester. In general the structures given by candidates were accurately drawn but candidates should be reminded to check their work carefully to ensure the correct number of atoms and bonds are present if using displayed formula.
			Total	6	
1 8	а	i	Using a pH probe on a data logger OR pH meter	1	
		ii	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 0.11(0) (mol dm ⁻³), award 2 marks	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below.
			correction of CH_000H = $\frac{2.15 \times 10^{3} \times 1000}{25.0}$ = 0.11(0) (mol dm ⁻³)		ANNOTATE WITH TICKS AND CROSSES, etc ALLOW ECF: n(NaOH) × 1000/25.00
	q	i	Brilliant yellow AND Vertical section / rapid pH change matches the pH range / end point / colour change (of the indicator)	1	ALLOW pH range (of the indicator) matches equivalence point ALLOW end point / colour change matches equivalence point IGNORE colour change matches end point (colour change is the same as end point)
		ii	Explanation: Acid / H ⁺ reacts with A ⁻ AND equilibrium (position) shifts towards HA (to give a red colour)	4	ALLOW direction of equilibrium shift if

			Alkali / OH [−] reacts with HA/H⁺ AND equilibrium (position) shifts towards A [−] (to give a yellow colour)		equilibrium shown: HA ≓ H⁺ + A⁻ i.e. 'towards HA' is equivalent to 'to left' i.e. 'towards A⁻' is equivalent to 'to right'
			At end point, equal amounts of HA and A [−] AND orange colour		
					ALLOW yellow-red colour
			Total	8	
1 9	а	i	ОН СН₃Н СN	1	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		ii	aqueous acid OR H ⁺ / H ₂ O	1	ALLOW H⁺(aq) / H₂SO₄(aq) / HC/(aq)
			Angle a = 109.5°		
			Angle b = 104.5°		ALLOW 109–110°
		ii i	Angle c = 120°	2	ALLOW 104–105°
			Two correct All three correct		
	b	i	It is an electron pair donor OR donates a lone pair	1	
		ii	$\begin{array}{c} \begin{array}{c} \begin{array}{c} CH_{3} & \overbrace{O}^{+} \\ HO & \overbrace{O}^{-} \\ HO & \overbrace{O}^{-} \\ HO & \overbrace{O}^{-} \\ Curly arrow from HO^{-} to carbon atom of C=O bond \\ Correct dipole AND curly arrow from C=O bond to O^{5-} \\ \hline \\ \hline \\ \end{array}$	4	Curly arrow must come from lone pair on O of HO ⁻ OR OH ⁻ OR from minus sign on HO ⁻ ion (No need to show lone pair if curly arrow came from negative charge on O) IGNORE dipole on C–O single bond Curly arrow must come from lone pair on O OR from minus sign on O ⁻ ion

				(No need to show lone pair if curly arrow came from negative charge on O)
	i	Correct organic product: $CH_3 - C - CH_3 $	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		Total	11	
2 0	i	reaction with bases: neutralisation AND reaction with metals: redox	1	Enter text here.
	1	correctly calculates $n(\mathbf{A}) = \frac{1.125}{90} = 0.0125 \text{ (mol)}$ volume of H ₂ = $\frac{0.0125}{2} \times 24,000 = 150 \text{ cm}^3$	2	ALLOW 0.15 dm ³
		units required		ALLOW ECF from n(A)
	ii i	C ₆ H ₁₂ O ₆ Mg	1	DO NOT ALLOW (C ₃ H ₆ O ₃) ₂ Mg
	i	Type of reaction of COOH: e.g. esterification AND reagents and conditions e.g. CH ₃ OH AND H ₂ SO ₄ Organic product of COOH reaction Type of reaction of –OH AND reagents and conditions Organic product of –OH reaction	4	ALLOW esterification with any stated alcohol e.g. product from CH ₃ OH/H ₂ SO ₄ → CH ₃ (CHOH)COOCH ₃ Many possible reactions of secondary alcohol possible, e.g. oxidation with K ₂ Cr ₂ O ₇ / H ₂ SO ₄ + heat → CH ₃ (CO)COOH elimination with H ₂ SO ₄ / H ₃ PO ₄ + heat → CH ₂ = CHCOOH esterification with CH ₃ COOH / H ₂ SO ₄ OR CH ₃ COC/ → CH ₃ (CHOOCCH ₃)COOH bromination with NaBr / H ₂ SO ₄ → CH ₃ (CHBr)COOH ALLOW self-polymerisation as reaction for either group (if another reaction example given) condensation polymerisation with H ₂ SO ₄ → [OCH(CH ₃)CO] ₀

PhysicsAndMathsTutor.com

		Product from reaction 2: Br		
		СН ₃ (СН ₂) ₂ — С — СООН Н		
	ii	(<i>E</i>)-pent-2-enoic acid	1	ALLOW " <i>E</i> " with or without brackets
	ii	$CH_{3}CH_{2} COOH$ $C=C$ $C=C$ $CH_{3}CH_{2} H$ $CH_{3}CH_{2} H$ $C+C-C$ I I $C=C$ I $COOH$	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous. 'End bonds' MUST be shown (solid or dotted) IGNORE brackets and / or <i>n</i>
	i v	combustion for energy production use as an organic feedstock for the production of plastics and other organic chemicals	2	
		Total	7	
2 3	i	step 1 = (conc.) H ₂ SO ₄ AND CH ₃ CH ₂ OH	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous.
	ii	BOTH organic structures balanced equation H_{1} + 6[H] + 6[H] + 6[H] $+ 2H_{2}O$	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous.
		Total	3	